所有可以减小包体积的方式
Asked on 2026-01-14
1 search
在WWDC中,Apple 提供了多种方法来减小包体积,特别是在机器学习模型和3D资产的优化方面。以下是一些关键技术:
-
模型压缩:
- Palletization:通过将相似的权重值聚类并使用查找表来表示这些聚类中心,从而压缩模型大小。
- Quantization:将浮点权重值线性映射到整数范围,并使用量化参数将整数映射回浮点。
- Pruning:通过将权重矩阵中的最小值设为零,仅存储非零值和位掩码来实现稀疏表示。
- Sparse Palletization and Quantization:结合稀疏性和其他压缩技术以进一步减小模型大小。
-
3D资产优化:
- Texture Packing:将多个灰度纹理数据合并到一个更大的文件中,通过利用颜色纹理的不同通道来减少纹理文件的总大小。
- Adaptive Polygon Reduction:根据可能的视点减少多边形数量,从而简化场景复杂性。
- Baking Textures:将高分辨率纹理烘焙到低多边形网格上,以减少纹理文件大小。
这些技术可以显著减少应用程序的包体积,同时保持性能和视觉质量。有关详细信息,您可以查看以下相关的WWDC会话:

Platforms State of the Union
Discover the newest advancements on Apple platforms.

Bring your machine learning and AI models to Apple silicon
Learn how to optimize your machine learning and AI models to leverage the power of Apple silicon. Review model conversion workflows to prepare your models for on-device deployment. Understand model compression techniques that are compatible with Apple silicon, and at what stages in your model deployment workflow you can apply them. We’ll also explore the tradeoffs between storage size, latency, power usage and accuracy.

Optimize your 3D assets for spatial computing
Dive into an end-to-end workflow for optimized 3D asset creation. Discover best practices for optimizing meshes, materials, and textures in your digital content creation tool. Learn how to harness shader graph, baking, and material instances to enhance your 3D scene while optimizing performance. Take advantage of native tools to work more effectively with your assets and improve your app’s performance.
