Which is the correct way to refer to this technology, a "Core ML" model or "CoreML" model?

Generated on 2/23/2025

1 search

The correct way to refer to this technology is "Core ML" model. Throughout the context provided, "Core ML" is consistently used to describe the framework and models associated with it.

Deploy machine learning and AI models on-device with Core ML

Deploy machine learning and AI models on-device with Core ML

Learn new ways to optimize speed and memory performance when you convert and run machine learning and AI models through Core ML. We’ll cover new options for model representations, performance insights, execution, and model stitching which can be used together to create compelling and private on-device experiences.

Explore machine learning on Apple platforms

Explore machine learning on Apple platforms

Get started with an overview of machine learning frameworks on Apple platforms. Whether you’re implementing your first ML model, or an ML expert, we’ll offer guidance to help you select the right framework for your app’s needs.

Platforms State of the Union

Platforms State of the Union

Discover the newest advancements on Apple platforms.

Bring your machine learning and AI models to Apple silicon

Bring your machine learning and AI models to Apple silicon

Learn how to optimize your machine learning and AI models to leverage the power of Apple silicon. Review model conversion workflows to prepare your models for on-device deployment. Understand model compression techniques that are compatible with Apple silicon, and at what stages in your model deployment workflow you can apply them. We’ll also explore the tradeoffs between storage size, latency, power usage and accuracy.

What’s new in Create ML

What’s new in Create ML

Explore updates to Create ML, including interactive data source previews and a new template for building object tracking models for visionOS apps. We’ll also cover important framework improvements, including new time-series forecasting and classification APIs.